Aplica el aprendiz libsvm por Chih-Chung Chang y Chih-Jen Lin. La SVM es un método potente para clasificación y regresión. Este operador soporta los tipos de SVM C-SVC y un nu-SVC para tareas de clasificación, así como epsilon-SVR y nu-SVR para tareas de regresión.
Además one-class brinda la posibilidad de aprender a partir de sólo una clase de ejemplos y luego probar si nuevos ejemplos coinciden con los conocidos. En comparación con los otros aprendices de SVM, el libsvm
también soporta aprendizaje interno multiclase y la estimación de probabilidad basada en la escala de Platt para valores de confianza adecuados después de aplicar el modelo aprendido sobre un conjunto de datos de
clasificación.