El modelo de referencia CRISP-DM

II-El modelo de referencia CRISP-DM

El modelo de proceso corriente para la minería de datos proporciona una descripción del ciclo de vida del proyecto de minería de datos. Este contiene las fases de un proyecto, sus tareas respectivas, y las relaciones entre estas tareas. En este nivel de descripción, no es posible identificar todas las relaciones. Las relaciones podrían existir entre cualquier tarea de minería de datos según los objetivos, el contexto, y –lo más importante- el interés del usuario sobre los datos.

El ciclo de vida del proyecto de minería de datos consiste en seis fases, mostrado en la Figura 2. La secuencia de las fases no es rígida.

El movimiento hacia adelante y hacia atrás entre fases diferentes es siempre requerido. El resultado de cada fase determina que la fase, o la tarea particular de una fase, tienen que ser realizados después. Las flechas indican las más importantes y frecuentes dependencias entre fases.

El círculo externo en la Figura 2 simboliza la naturaleza cíclica de la minería de datos. La minería de datos no se termina una vez que la solución es desplegada. Las informaciones ocultas (lecciones cultas) durante el proceso y la solución desplegada pueden provocar nuevas, a menudo más - preguntas enfocadas en el negocio. Los procesos de minería subsecuentes se beneficiarán de las experiencias previas. En el siguiente, brevemente perfilamos cada fase:

Figura 2: Fases del modelo de referencia CRISP-DM

Comprensión del negocio

Esta fase inicial se enfoca en la comprensión de los objetivos de proyecto y exigencias desde una perspectiva de negocio, luego convirtiendo este conocimiento de los datos en la definición de un problema de minería de datos y en un plan preliminar diseñado para alcanzar los objetivos.

Comprensión de los datos

La fase de entendimiento de datos comienza con la colección de datos inicial y continua con las actividades que le permiten familiarizar primero con los datos, identificar los problemas de calidad de datos, descubrir los primeros conocimientos en los datos, y/o descubrir subconjuntos interesantes para formar hipótesis en cuanto a la información oculta.

Preparación de datos

La fase de preparación de datos cubre todas las actividades necesarias para construir el conjunto de datos final [los datos que serán provistos en las herramientas de modelado] de los datos en brutos iniciales. Las tareas de preparación de datos probablemente van a ser realizadas muchas veces y no en cualquier orden prescripto. Las tareas incluyen la selección de tablas, registros, y atributos, así como la transformación y la limpieza de datos para las herramientas que modelan.

Modelado

En esta fase, varias técnicas de modelado son seleccionadas y aplicadas, y sus parámetros son calibrados a valores óptimos. Típicamente hay varias técnicas para el mismo tipo de problema de minería de datos. Algunas técnicas tienen requerimientos específicos sobre la forma de datos. Por lo tanto, volver a la fase de preparación de datos es a menudo necesario.

Evaluación

En esta etapa en el proyecto, usted ha construido un modelo (o modelos) que parece tener la alta calidad de una perspectiva de análisis de datos.

Antes del proceder al despliegue final del modelo, es importante evaluar a fondo ello y la revisión de los pasos ejecutados para crearlo, para comparar el modelo correctamente obtenido con los objetivos de negocio. Un objetivo clave es determinar si hay alguna cuestión importante de negocio que no ha sido suficientemente considerada. En el final de esta fase, una decisión en el uso de los resultados de minería de datos debería ser obtenida.

Desarrollo

La creación del modelo no es generalmente el final del proyecto. Incluso si el objetivo del modelo es de aumentar el conocimiento de los datos, el conocimiento ganado tendrá que ser organizado y presentado en el modo en el que el cliente pueda usarlo. Ello a menudo implica la aplicación de modelos "vivos" dentro de un proceso de toma de decisiones de una organización, por ejemplo, en tiempo real la personalización de página Web o la repetida obtención de bases de datos de mercadeo. Dependiendo de los requerimientos, la fase de desarrollo puede ser tan simple como la generación de un informe o tan compleja como la realización repetida de un proceso cruzado de minería de datos a través de la empresa. En muchos casos, es el cliente, no el analista de datos, quien lleva el paso de desarrollo. Sin embargo, incluso si el analista realizara el esfuerzo de despliegue, esto es importante para el cliente para entender de frente que acciones necesita para ser ejecutadas en orden para hacer uso de los modelos creados actualmente.

La figura 3 presenta un contexto de fases acompañadas por tareas genéricas y las salidas. En las secciones siguientes, describimos cada tarea genérica y sus salidas más detalladamente. Enfocamos nuestra atención en descripciones de tarea y los resúmenes de salidas.

Figura 3: Tareas genéricas (negritas) y salidas (cursivas) del modelo de referencia CRISP-DM