Notas y referencias - FCE de un proyecto de BI
Notas y referencias - FCE de un proyecto de BI ATI 4 Febrero, 2012 - 21:02Notas
1 Un Data Warehouse (DW) es una base de datos usada para generación de informes. Los datos son cargados desde los sistemas operacionales para su consulta. Pueden pasar a través de un almacén de datos operacional para operaciones adicionales antes de que sean usados en el DW para la generación de informes (Traducción libre de la introducción al concepto que se encuentra en la Wikipedia en inglés el 24/6/2011: https://en.wikipedia.org/wiki/Data_warehouse). Se suele considerar que el término equivalente en castellano es "Almacén de datos": "En el contexto de la informática, un almacén de datos (del inglés data warehouse) es una colección de datos orientada a un determinado ámbito (empresa, organización, etc.), integrado, no volátil y variable en el tiempo, que ayuda a la toma de decisiones en la entidad en la que se utiliza. Se trata, sobre todo, de un expediente completo de una organización, más allá de la información transaccional y operacional, almacenado en una base de datos diseñada para favorecer el análisis y la divulgación eficiente de datos (especialmente OLAP, procesamiento analítico en línea)". (Wikipedia en castellano 24/6/2011: https://es.wikipedia.org/wiki/Almac%C3%A9n_de_datos).
2 Un Data mart es una versión especial de almacén de datos (data warehouse). Son subconjuntos de datos con el propósito de ayudar a que un área específica dentro del negocio pueda tomar mejores decisiones. Los datos existentes en este contexto pueden ser agrupados, explorados y propagados de múltiples formas para que diversos grupos de usuarios realicen la explotación de los mismos de la forma más conveniente según sus necesidades. https://es.wikipedia.org/wiki/Data_mart.
Referencias
[1] U.M. Fayyad. Tutorial report. Summer school of DM. Monash Uni Australia.
[2] R. Preston. Business Intelligence Still In Its Infancy. Information Week. Último acceso: julio 2010, https://www.informationweek.com/story/showArticle.jhtml?articleID=19680….
[3] P. Chowdhary, G.A. Mihaila, H. Lei. Model Driven Data Warehousing for Business Performance Management. ICEBE 2006: pp 483-487.
[4] P. Chowdhary, K. Bhaskaran et al. Model Driven Development for Business Performance Management. IBM Systems Journal, vol 45, nº 3, pp 587-605.
[5] B. Afolabi, O. Thiery. Using Users’ Expectations to Adapt Business Intelligence Systems. Último acceso: julio 2010, https://arxiv.org/ftp/cs/papers/0608/0608043.pdf.
[6] V. Stefanov, B. List. Bridging the Gap between Data Warehouses and Business Processes: A Business Intelligence Perspective for Event-Driven Process Chains. EDOC 2005: pp. 3-14.
[7] J. Rowan. Design Techniques for a Business Intelligence Solution. Auerbach Publications 2003.
[8] T. Bäck. Adaptive business intelligence based on evolution strategies: some application examples of self-adaptive software. Inf. Sci. 148(1-4): pp. 113-121.
[9] M.K. Brohman, M. Parent, M. Pearce, N. Wade. The Business Intelligence Value Chain: Data-Driven Decision Support in a Data Warehouse Environment: An Exploratory Study. HICSS 2000.
[10] L.T. Moss. Business Intelligence Methodologies, Agile with Rigor. Cutter IT Journal. vol. 14, no 12, pp. 19-26.
[11] S. March, A.R. Hevner. Integrated decision support systems, A data warehousing perspective. Decision Support Systems, 2005.
[12] Y. Guo, S. Tang, Y. Tong, D. Yang. Triple-driven data modeling methodology in data warehousing: a case study. DOLAP 2006: pp: 59-66.
[13] D. Dori, R. Feldman, A. Sturm. An OPM-based Method for Transformation of Operational System Model to Data Warehouse Model. SwSTE 2005, pp. 57-66.
[14] C. Kaldeich, J. Oliveira e Sá. Data Warehouse Methodology: A Process Driven Approach. CAiSE 2004, pp. 536-549.
[15] L. Niu, G. Zhang. A Model of Cognition-Driven Decision Process for Business Intelligence. Web Intelligence, 2008 pp. 876-879.
[16] J. Thomann, D.L. Wells. Implementing Data Warehousing Methodology- Guideline for Success. TDWI 2000.
[17] L.T. Moss, Sh. Atre. Business Intelligence Roadmap: The Complete Project Lifecycle for Decision Support Applications. Addison Wesley Longman, 2003. ISBN-10: 0201784203.
[18] G.R. Gangadharan, S.N. Swami. Business Intelligence Systems Design and Implementation Strategies. IT1 2004, pp. 139-144.
[19] L.T. Moss. Ten Mistakes to avoid for Data Warehouse Projects Managers. TDWI’S best of Business Intelligence Vol 3, pp. 16-22.
[20] R. Cicchetti et al. (Eds.). A Comparison of Data Warehouse Development Methodologies Case Study of the Process Warehouse. DEXA 2002, LNCS 2453, pp. 203–215, 2002.
[21] T.N. Huynh, J. Schiefer. Prototyping Data Warehouse Systems. DaWaK 2001, pp. 195-207.
[22] W. Yang, P. Hou, Y. Fan, Q. Wu. The Research of an Intelligent Object-Oriented Prototype for Data Warehouse. ICIC (1), 2006, pp. 1300-1305.
[23] R. Winter, B. Strauch. A Method for Demanddriven Information Requirements Analysis in Data Warehousing Projects. Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03).
[24] H. Engström, S. Chakravarthy, B. Lings. A User-centric View of Data Warehouse Maintenance Issues. BNCOD 2000, pp. 68-80.
[25] D. Schuff, K. Corral, O. Turetken. Comparing the Effect of Alternative Data Warehouse Schemas on End User Comprehension Level. ICIS’05 https://mis.temple.edu/sigdss/icis05/.
[26] J. Fernández, E. Mayol, J.A. Pastor. Agile Business Intelligence Governance: Su justificación y presentación. ITSMF 2008, https://www.uc3m.es/portal/page/portal/congresos_jornadas/congreso_itsm….
[27] J. Thomann, D.L. Wells. Evaluating Data Warehousing Methodologies- An Evaluation Process.TDWI 1999.
[28] B. Azvine, Z. Cui, D.D. Nauck. Towards realtime business intelligence. BT Technology Journal Vol 23 No 3 July 2005, pp. 214-225.
[29] K.R. Quinn. Establishing a culture of Measurement, a practical guide to BI. White Paper Information Builders 2003.
[30] J. Becker, L. Vilkov, C. Brelage. Multidimensional Knowledge Spaces for Strategic Management - Experiences at a Leading Manufacturer of Construction and Mining Equipment. DEXA Workshops 2004, pp. 482-487.
[31] A. Counihan, P. Finnegan, D. Sammon. Towards a framework for evaluating investments in data warehousing. Inf. Syst. J. 12(4), pp. 321-338.
[32] M. Gibson, D. Arnott, I. Jagielska. Evaluating the Intangible Benefits of Business Intelligence: Review & Research Agenda. IFIP TC8/WG8.3 International Conference, 2004.
[33] A. Faulkner, A. MacGillivray. A business lens on business intelligence – 12 tips for success. ODTUG 2001.
[34] T. Chenoweth, K. Corral, H. Demirkan. Seven key interventions for data warehouse success. Commun. ACM 49(1), pp. 114-119.
[35] M.D. Solomon. Ensuring a successful data warehouse initiative. ISM Journal winter 2005, pp, 26-36.
[36] D. Briggs, D. Arnott. Decision Support Systems Failure: An Evolutionary Perspective (Working Paper. No. 2002/01). Melbourne, Australia: Decision Support Systems Laboratory, Monash University.
[37] D. Briggs. A Critical Review of Literature on Data Warehouse Systems Success/Failure (Working Paper. No. 2004/01). Melbourne, Australia: Decision Support Systems Laboratory, Monash University.
[38] B.H. Wixom, H.J. Watson. An empirical investigation of the factors affecting data warehouse success. MIS Quarieriy Vol. 25 No. 1, pp. 17-41, marzo 2001.
[39] B.H. Wixom, H.J. Watson. The Current State of Business Intelligence. IEEE Computer (COMPUTER) 40(9), pp:96-99.
[40] D. Sammon, P. Finnegan. The Ten Commandments of Data Warehousing. The DATA BASE for Advances in Information Systems, Vol. 31, No. 4.
[41] R. Weir, T. Peng, J.M. Kerridge. Best Practice for Implementing a Data Warehouse: A Review for Strategic Alignment. DMDW 2003.
[42] R.S. Abdullaev, I.S. Ko. A Study on Successful Business Intelligence Systems in Practice. JCIT 2(2), pp. 89-97.
[43] I.S. Ko, R.S. Abdullaev. A Study on the Aspects of Successful Business Intelligence System Development, Computational Science – ICCS 2007.
[44] W. Yeoh, J. Gao, A. Koronios. Towards a Critical Success Factor Framework for Implementing Business Intelligence Systems: A Delphi Study in Engineering Asset Management Organizations. CONFENIS 2007.